Rheology and structural arrest of casein suspensions.
نویسندگان
چکیده
The rheology of milk powder suspensions is investigated up to very high concentrations, where structural arrest occurs. The main component of the milk powder investigated is casein, so that the suspensions can be regarded as casein suspensions. Four concentration regimes are identified. For effective casein volume fractions less than 0.54 the concentration dependence of the zero-shear viscosity is similar to that of hard-sphere suspensions. However, due to the elastic deformation of the caseins, the viscosity does not diverge at the hard sphere glass transition. In the volume-fraction range of 0.55-0.61 the viscosity exhibits a surprisingly weak dependence on concentration. The shape of the curve of the shear viscosity versus concentration deviates from hard sphere behavior in an unusual way, due to the observation of a region of almost constant viscosity. This concentration regime is followed by a regime where the viscosity steeply increases, eventually diverging at an effective volume fraction of 0.69. Frequency dependent rheology and diffusing wave spectroscopy measurements indicate that the suspensions are jammed for volume fractions above 0.69. Finally we found the concentration dependence of the relative zero-shear viscosity of casein suspensions to be very similar with the one of the micro-gels at volume fractions below 0.50 and above 0.55, which are know to shrink above a certain volume fraction, due to osmotic stress.
منابع مشابه
Constant Stress and Pressure Rheology of Colloidal Suspensions.
We study the constant stress and pressure rheology of dense hard-sphere colloidal suspensions using Brownian dynamics simulation. Expressing the flow behavior in terms of the friction coefficient-the ratio of shear to normal stress-reveals a shear arrest point from the collapse of the rheological data in the non-Brownian limit. The flow curves agree quantitatively (when scaled) with the experim...
متن کاملSlow dynamics, aging, and glassy rheology in soft and living matter
We explore the origins of slow dynamics, aging and glassy rheology in soft and living matter. Non-diffusive slow dynamics and aging in materials characterised by crowding of the constituents can be explained in terms of structural rearrangement or remodelling events that occur within the jammed state. In this context, we introduce the jamming phase diagram proposed by Liu and Nagel to understan...
متن کاملGlass transition in suspensions of charged rods: structural arrest and texture dynamics.
We report on the observation of a glass transition in suspensions of very long and thin, highly charged colloidal rods (fd-virus particles). Structural particle arrest is found to occur at a low ionic strength due to caging of the charged rods in the potential setup by their neighbors through long-ranged electrostatic interactions. The relaxation time of density fluctuations as probed by dynami...
متن کاملThe rheology of fibre suspensions
We review theoretical work on the rheology of fibre suspensions. We seek to clarify one or two confusions in published work and also give a small improvement to Batchelor’s formula for extensional viscosity of suspensions of long fibres between the dilute and semi-dilute régimes.
متن کاملRheology of soft colloids across the onset of rigidity: scaling behavior, thermal, and non-thermal responses.
We study the rheological behavior of colloidal suspensions composed of soft sub-micron-size hydrogel particles across the liquid-solid transition. The measured stress and strain-rate data, when normalized by thermal stress and time scales, suggest our systems reside in a regime wherein thermal effects are important. In a different vein, critical point scaling predictions for the jamming transit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of colloid and interface science
دوره 342 2 شماره
صفحات -
تاریخ انتشار 2010